Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 902: 166110, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37567313

ABSTRACT

Monkeypox virus (Mpxv) is a dsDNA virus that has become a global concern for human health in 2022. As both infected people and non-human hosts can shed the virus from their skin, faeces, urine and other body fluids, and the resulting sewage contains viral load representative of the whole population, it is highly promising to detect the spread of monkeypox virus in municipal wastewater. We established a methodology for sewage-based monitoring of Mpxv in Prague and analysed samples (n = 24) already early August-October of 2022 in a municipality with 1.4 million inhabitants that only reported 29 cumulative cases in this period. We isolated Mpxv DNA with the Wizard Enviro Total Nucleic Acid Kit, and thereafter detected Mpxv DNA using the EliGene® Monkeypox RT-PCR Kit. Prague wastewater was positive for Mpxv (in total 9 positive samples in periods with 1-9 new cases per week, coinciding with a weekly incidence of 0.07-0.64 per 100,000 inhabitants. The method for confirmation of wastewater positivity via semi-nested PCR and Sanger sequencing was successfully confirmed on positive controls including Mpxv particles and Mpxv-positive wastewater from the Netherlands. However, for Prague wastewater samples, amplification of Mpxv DNA via semi-semi-nested PCR was unsuccessful. This was probably due to extremely low case count, leading to the amplification of non-target bacterial DNA. Compared to other studies with much higher Mpxv prevalence, we show the outstanding sensitivity of our approach for monitoring the spread of monkeypox using wastewater.


Subject(s)
Humans , Wastewater , DNA, Viral/genetics , Sewage , Monkeypox virus/genetics
2.
Radiat Prot Dosimetry ; 198(9-11): 514-520, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36005951

ABSTRACT

The dramatic rise in diagnostic procedures, radioisotope-based scans and intervention procedures has created a very valid concern regarding the long-term biological consequences from exposure to low doses of ionizing radiation. Despite its unambiguous medical benefits, additional knowledge on the health outcome of its use is essential. This review summarizes the available information regarding the biological consequences of low-dose radiation (LDR) exposure in humans (e.g. cytogenetic changes, cancer risk and radiation-induced cataracts. However, LDR studies remain relatively new and thus an encompassing view of its biological effects and relevant mechanisms in the human body is still needed.


Subject(s)
Radiation Injuries , Radiation, Ionizing , Humans , Radiation Dosage , Radiation Injuries/etiology , Radiation Injuries/prevention & control , Tomography, X-Ray Computed/methods
3.
Radiat Prot Dosimetry ; 198(9-11): 521-526, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36005990

ABSTRACT

The JC-1 dye is widely used in apoptosis studies to monitor mitochondrial health. The probe was tested in vitro on two established cell lines and peripheral porcine blood lymphocytes after gamma irradiation (IR) to assess its potential in biodosimetric evaluation. In brief, we stained irradiated and non-irradiated cells with the JC-1 dye to determine the existing changes in mitochondrial membrane potential and monitor cell health through flow cytometry. The stage of injury in these cells was evaluated through an irradiated versus non-irradiated ratio (IVNIR), comparing the relative proportion of polarised cells containing red JC-1 aggregates. We observed a decreasing IVNIR as the radiation dose increased (i.e. 0.5; 1; 2; 4; 6; 8 and 10 Gy), performing the analysis at 4, 8 and 24 h after IR in all the tested cells. The results from the JC1-dye test showed that CD4 T lymphocytes were more sensitive to irradiation than other subpopulations.


Subject(s)
Apoptosis , Mitochondria , Animals , Apoptosis/radiation effects , Dose-Response Relationship, Radiation , Flow Cytometry , Membrane Potential, Mitochondrial , Swine
4.
Front Pharmacol ; 13: 663855, 2022.
Article in English | MEDLINE | ID: mdl-35847048

ABSTRACT

Purpose: Insulin-like growth factor-1 (IGF-1) stimulates epithelial regeneration but may also induce life-threatening hypoglycemia. In our study, we first assessed its safety. Subsequently, we examined the effect of IGF-1 administered in different dose regimens on gastrointestinal damage induced by high doses of gamma radiation. Material and methods: First, fasting C57BL/6 mice were injected subcutaneously with IGF-1 at a single dose of 0, 0.2, 1, and 2 mg/kg to determine the maximum tolerated dose (MTD). The glycemic effect of MTD (1 mg/kg) was additionally tested in non-fasting animals. Subsequently, a survival experiment was performed. Animals were irradiated (60Co; 14, 14.5, or 15 Gy; shielded head), and IGF-1 was administered subcutaneously at 1 mg/kg 1, 24, and 48 h after irradiation. Simultaneously, mice were irradiated (60Co; 12, 14, or 15 Gy; shielded head), and IGF-1 was administered subcutaneously under the same regimen. Jejunum and lung damage were assessed 84 h after irradiation. Finally, we evaluated the effect of six different IGF-1 dosage regimens administered subcutaneously on gastrointestinal damage and peripheral blood changes in mice 6 days after irradiation (60Co; 12 and 14 Gy; shielded head). The regimens differed in the number of doses (one to five doses) and the onset of administration (starting at 1 [five regimens] or 24 h [one regimen] after irradiation). Results: MTD was established at 1 mg/kg. MTD mitigated lethality induced by 14 Gy and reduced jejunum and lung damage caused by 12 and 14 Gy. However, different dosing regimens showed different efficacy, with three and four doses (administered 1, 24, and 48 h and 1, 24, 48, and 72 h after irradiation, respectively) being the most effective. The three-dose regimens supported intestinal regeneration even if the administration started at 24 h after irradiation, but its potency decreased. Conclusion: IGF-1 seems promising in the mitigation of high-dose irradiation damage. However, the selected dosage regimen affects its efficacy.

SELECTION OF CITATIONS
SEARCH DETAIL
...